Interactive High Speed Option

Constraints Driven Design Rules

Pulsonix delivers a powerful set of constraint rules-driven interactive High Speed design features. Conceived from the Schematic, the design is defined by the engineer during the early logical capture phase. All constraint rules are passed to the PCB design automatically where they are implemented using graphical guidance to ensure the lavout is correct.

Max Amplitude:	2.54000					
Min Amplitude:	1.27000					
Separation:	0.25400	Styles	Net Rules	Size Limits	Speci	al Routing Attribute
Min Number Of Cycles:	1 🚔					
Allow Offset:		ll r	Track Length			
Mitre Shape: 180 Deg	gree Curve 👻	1	Min: 25.400	00	Max:	76.20000
Curved:			Pin to Pin Cor	nnection		
Mitre Batio:	1.000000		Track Length	c		
inite ridio.	1.000000	1	Min: 5.0800	0	Max	81.28000
				Max Num oi	Vias:	2
hamfered Track Corner:	s: 🔽		Net Track Lei	nath Differer	nce	Min Test Probes
Corner Proportion:	0.707107		Max: 12.700	00		1
			12.100			
Back Off Track Ends:		A	dditional Res	trictions	0 Curre	ntly Defined

Rules Spreadsheet

Once your constraint rules have defined, they can then be displayed and filtered using the Rules Spreadsheet browser. This window can be customised to display the rules and values that you require during routing. This information is dynamic and updated in real time as the design is edited, keeping you informed at all times.

tules Spreadsheet															
H Nets		•	Edit	Colours	Options										
Ne	t Net Class	Bus Name	Sub-Net Att	Padt	Pad2	Min Length	Max Length	Length	Complete	Max Vias	Num Vias	Min Text Pr	Num Test P	Max Length	Length Diff
Diff1	PAIR					38.100	45.720	6.470-Est.					0	6.350	40.101-
HSE1	HSE			*	*	8.000	24.000	19.624+ Est.		1			0	2.000	29.770+
				U8.33	U13.1	8.000	14.000	10.875+ Est.		1	0				
				U8.33	U13.9	8.000	14.000	19.624+ Est.		1	0				
				U13.1	U13.9	8.000	14.000	8.749- Est.		1	0				
HSE2	HSE			*		8.000	24.000	38.792+ Est.		1			0	2.000	29.770+
				U8.32	U13.2	8.000	14.000	10.875+ Est.		1	0				
				U8.32	U13.8	8.000	14.000	19.297- Est.		1	0				
				U13.2	U13.8	8.000	14.000	29.770+	V	1	2				
SDL_In_	1 PAIR					38.100	45.720	40.101-	(V)				0	6.350	40.101-
SDI_In_	2 PAIR					38,100	45.720	40.101-					0	6.350	40.101-

Customise the Rules Spreadsheet to display rules important to you

Est 825.0

Max 900.0

Min 852.0

Dyanamic Length Indicators & Head-up Display

During track routing, the interactive display shows an 'oval' around the area to be routed indicating whether the track is within the minimum or maximum rule limits you have defined. A colour-coded and textbased head-up display shows whether you are working within the constraint rules. The exact rule defined is also shown in the head-up display for pin-to-pin and track length rules as well as the actual track path being routed and an estimate of the final track length.

> A 'head-up' display shows you colourcoded rules as the design is edited and the track lengths change

Differential Pair Routing

The advanced constraint rules allow Differential Pairs to be created easily and quickly. The two net pairs are routed interactively from their source using a dual path for both tracks and utilising an optional spacing rule between them to keep separation exact. The Differential Pairs may have rules that define how much they are allowed to differ in length once completed and what the minimum percentage of the overall length is allowed to deviate away from being 'paired'. When layer swaps are required, you can choose the via pattern to use. The interactive editor displays the legal via pattern available and the new track exit paths.

Used in combination with the other Net Length rules, precise control of the length of the Differential Pairs can also be defined. Once routed, inherent Differential Pair knowledge is retained so that track 'pair' still acts as one unit, making modification less error prone. These rules also form part of the post-layout Design Rule Checking.

Serpentine Routing

Serpentine Routing enables you to increase the length of high speed nets following your constraint rules without introducing spacing errors and without manual intervention. Using the Serpentine Routing command you can define additional constraint parameters, such as the amplitude and separation of each loop, the number of loop cycles to insert and the amount of additional length required. Length skew for each track within a differential pair can be defined and added using the serpentine routing tool.

Define serbentine rules and skew lengths for differential pairs

With spacial awareness of all shapes, serpentine routing will avoid all design obstacles

www.pulsonix.com

Interactive High Speed Option

Pin-to-Pin & Daisy Chain Routing

Net Classes allow you can create specific track sequences using pinto-pin rules; rules for min/max pin-to-pin length and the overall track length. Where the exact net path required is critical daisy-chain routing gives you precise control to determine the sequence. Once defined, these rules are used during routing and can be further checked using the DRC Manufacturing feature.

Interactive Spiral Tracks and Shapes

Advanced spiral creation is supported for copper, tracks and shapes, these can be used on electrical and non-electrical layers. When created as tracks or copper, they can also be connected to as part of a net. Full DRC checking to these items is also permitted. Spirals can be associated with pads and vias within a footprint and reused on multiple designs. Complex spirals can also be used to create components such as planar transformers for use through multi-layer and embedded component technologies.

Define spirals for planar transformers spanning multiple layers

RF Design features

As part of the RF design suite, Pulsonix provides essential features to facilitate this; square-ended tracks and chamfered track corners. Both features are enabled on a Net Class basis to allow control of these features.

Square-ended tracks provide precise track ends when an 'openended' square end is required without the use of a square landing pad to achieve this.

Chamfered corners allow a traditional 45-degree inside and outside mitre to contain a 90-degree inner corner and 45-degree outer corner, ideal for RF designs.

✓ Concentric Corners Corner Radius: 107.50

entering the parameters

Pulsonix High Speed Feature & Rules Summary:

Circular

- Differential pair definition and routing
- Interactive routing of track pairs
- Pattern control for vias
- Track length rules
- Pin-to-Pin rules
- Maximum Length deviation rule
- Net length rules during routing
- Dynamic display of Min/Max rules
- Head-up of rules in text and updating
- Graphical net length indicators
- Min/Max Track length rules
- Min/Max Pin-to-Pin Track length rules
- Net Track length differences rule
- Conditional Track length Min/Max rules
- Daisy chain Pin-to-Pin topology rules
- 90 and 45 degree serpentine routing
- Spiral creation using intelligent rules
- Circular/square spiral shapes
- Square-ended tracks
- Chamfered track corners for true RF mitres

Pulsonix 20 Miller Court, Severn Drive, Tewkesbury, Glos, GL20 8DN, UK Tel: +44 (0) 1684 296 551 Email: sales@pulsonix.com Web: www.pulsonix.com